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indices.

(ii) For the special case €, =0 no tricritical point
occurs, in contrast to the case €,=0. The excep-
tional behavior of the thermodynamical quantities
in the critical point @(u,, 0, T,) is explained by the
fact that here T is parallel to the & axis.

(iii) The model may be used for several different
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physical systems. For instance, if S;=0 denotes
a vacancy on site i, a paramagnetic lattice gas is
described. The susceptibility diverges even in the
absence of ferromagnetic coupling if a critical
point P (# Q) is approached. The critical expo-
nents of the van der Waals gas for the compress-
ibility and the specific heat coincide with ours.
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The orbital contribution to the magnetic partial differential neutron cross section is cal-
culated for a realistic band model of paramagnetic nickel within the tight-binding scheme.
The orbital contribution is generally less than one-quarter that of the spin contribution in an
energy range up to ~0.15 eV. At higher energies it exceeds the spin contribution and should

be observable.

I. INTRODUCTION

In the past few years there have been several

theoretical and experimental studies aimed at under-

standing the generalized electron-spin susceptibil-
ity xs(¥, @) of magnetic metals, !**
the response of electrons to an external perturba-
tion, of frequency w and wave vector k, that couples
to their spin; i.e., it describes electron-spin dy-
namics. Efficient and accurate band-structure cal-
culations have made realistic calculations of y,
possible. This work has been stimulated by experi-
mental studies, especially thermal neutron scatter-
ing experiments.

The neutron-electron interaction evaluated to
leading order in the reciprocal of the neutron mass
is the sum of two terms, ° the spin and orbital in-

ys(X, w) measures

teractions. The contribution to the neutron cross
section from the former is simply related to x,

(k, w). For small scattering wave vectors, Elliott!
has argued that the matrix element of the orbital
interaction operator is a factor m,/m* smaller than
that of the spin interaction, and it has been as-
sumed to be negligible in experimental analysis.
Since fine detail can be measured by neutron scat-
tering, and measurements are not restricted to
small wave vectors, the orbital contribution to the
neutron cross section now warrants a more com-
plete study. - As a first step we have calculated the
orbital contribution to the magnetic neutron cross
section for a tight-binding model of paramagnetic
nickel and compared it with the spin contribution.
The latter dominates for small ¥ and w. The two
contributions become comparable for Zw~0.15 eV
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and the orbital contribution is the larger at higher
energies. For example, in the two cases X~0and
K~ zone boundary, the magnetic scattering comes
solely from the orbital interaction for energies ex-
ceeding 0.2 and 2 eV, respectively, and should be
observable.

The static orbital susceptibility for electrons in
a solid, in the absence of many-body effects, has
been studied by many authors, é but detailed numer-
ical calculations have been made only recently.’
The corresponding wave-vector-dependent orbital
susceptibility has been studied by Hebborn and
March. >® Szabo® and Schneider ° have evaluated
the generalized orbital susceptibility for a free-
electron gas, and this diverges for small [k | as
%1%, The tight-binding model is more appropriate
for a transition metal, and for this model the or-
bital cross section is finite for zero scattering
vector. !

In Sec. II an expression for the orbital contribu-
tion to the partial differential cross section is de~
rived for a tight-binding model of paramagnetic
nickel. The numerical evaluation of the contribu-
tion parallels that used previously to study x,, and
is described briefly in Sec. III. A detailed compar-
ison between the spin and orbital contributions is
given in Sec. IV together with our conclusions.

II. THEORY

The partial differential magnetic cross section for
unpolarized neutrons is 12

d%c _ (E_’_)1/2< 'yez )2
dQdE’ ~ \E m,c?

1 f”
>(21rﬁ w

te"“"({;)(“(O)}'- 5 (L) (t)) .
1)

In this expression the initial and scattered neutron
energies are denoted by E and E’, iw=E -E’, and
the interaction constant (ve?/m ,c ) =0.292 b. The
magnetic interaction operator ® ’ that appears in

correlation function in (1) is®

W=D M5
= K22, e ™ {Kx (8,xK) - i(kxD,)/H}, (2)

where T,, S,, and p, are the position vector and
spin and linear momentum operators, respectively,
of the vth magnetic electron.

Elliott! has studied the cross section (1) for Bloch
electrons in the absence of many-body interactions.
As noted in Sec. I, he argued that for small k¥ and
narrow bands the orbital contribution is negligible.

The calculation of the orbital contribution to the
cross section (1) is conveniently made by transform-

3049

ing to a second-quantized representation for D",
namely,

)VDIEDY

DY =~
£, A2 0,0

-2 t
]K| Ciao Cirg Do, 00

xf dEy g (1) ¥ KX Ty (F) . @)

Here P (T) is a Bloch wave function of wave vector
k and band A, and cj,,. and CEM are the appropriate
Fermi annihilation and creation operators for elec-
trons with spin 0. For a tight-binding model, '3
vo)-grr 2 ap(k)e™ ! ¢, (F-1), @)
where ¢, (T — 1) is the atomic wave function with
magnetic quantum number m centered at the lattice
site defined by the vector 1 and ay (k) are the
eigenfunctions of the Fourier transform of the ma-
trix elements of the one-electron Hamiltonian.
The matrix element in (3) is evaluated with the
Bloch functions (4) and the assumption that inte-
grals involving ¢’s centered on different atomic
sites can be neglected. We thereby obtain

DP == [£]2 T T T chuolrn
L o
Ls icidoi gn i i
ﬁ% (K+k=k7)o1 AW (k, k') , (5)
where

B (k)= 2 al (&) [ dTo3@)

eFFH{Ex Vo (T).  (6)

The atomic wave function ¢,, is the product of a
radial wave function f(r) and a spherical harmonic
Yi(r). The matrix element in (6), which we hence-
forth denote by rmm’ %W can be evaluated exactly.
Following Johnston, * we find for the gth spherical
component of I™™ the result

™o [k PE M2 @12 Y D iR YE(R)
KQ K'Ql

X[ <jl{'-l>+ <jK’+1>]T(K>KI)A(K,,K,’ l)
X(K'Q'Im |I'm') KQK'Q' |1q) . (1)

In this expression the integer K'=1,3,...,2/-1

and
TEK,K)= (K2 ifK=K'+1
=K'+1)2 if K=K' -1

=0 otherwise'. (8)
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The radial integrals (jx) are defined by
(o= )" P Pe)iglr), ®)

where jg(k7) is a spherical Bessel function of order
K. Finally,

’ ’ _ I+1 Z(2l - 1) 1z
A(K’K)l)_(—l) A+1 l

IK'1-1\) 1 11-1
><(oo 0 ){K’l K’} » (10)

where the 3-j and 6-j symbols, and also the Clebsch-
Gordan coefficients in (7), are defined by Ed-
monds. *°

™ satisfies two symmetry relationships that
are useful in calculations. Since it is the matrix

element of a Hermitian operator, we have
I = (- )M, (11a)

and, secondly, a direct calculation proves that

G ) AeS VA (11b)
Note that T=™-m=_ Tmm anq Tm-m_ @,
By utilizing (11) and
* - -m
al (k)= (-1)"as"(K) | (12)

the 25 terms in K’"", Eq. (6), can be reduced to

*
Mo 1222 Im@? a?))
- £ 3 * %
+ T2 Im@l al)+ T2 @? al.—alal)

X pk
F2°(a,t ag,—axal,)+ T2t @l a2¥ _ g2 all)

0

- * *_ - * 1%
+ IT%@Y a% - akal. )+ T@) a% - adal,)

+ T2@a2, - a2al.)+ T @3ak - alad.)

+ T 120241, _glg2,) . (13)
From this expression note that A = — £,

The relative magnitude of the various terms in
(7) is determined by the radial integrals (jg). Only
(jo» is finite for zero wave vector, and to a good ap-
proximation we can neglect the term coming from
K'=3. The coefficient of (j,) in this term is on
average about + that coming from the K’=1 term.

In this approximation

DL [ (o+ (7)1 5 2 21 ChgCiro

k,k' Asr!
X{X{_ )3 e““‘*f-""f}A’“'(E,i') .4
i

and the reduced A™ in _(14) is calculated from (13)
neglecting T2 T2l T2 ang T2 and with the
remaining l"""” terms replaced by either
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B7m= gmi{=- 8,0+ Y2(R) [ 37(4 - ¢*)}V%} (15a)
or
fmtmoL(@-m)@+m)]2
X{81,,VZ + Y2, (%) [ t7(2- ¢)@3 - q)]/%} . (15D)

Using the spherical harmonics as defined by Ed-
monds, !* we obtain the values shown in Table I for
the I™™ as functions of the polar angles 6 and ¢
of k with respect to the quantization axes.

The remaining terms in Eq. (13) may be sim-
plified by writing the atomic wave-function co-
efficients a} (k) in terms of the coefficients of the
irreducible representations of the continuous group
1=2 in cubic symmetry These coefficients, which
we denote by C2 (k), are purely real and are re-
lated to the a) (k) by

ai= 1/¥2) (- 1(‘) + C)‘z-,z) ’

ay= (1/V2) (C3,- CLy) (16)

A
al=Cia2 .
We then have
ALY

A =120+ TGyt f‘el(cs+ws)+ TU2(- Cy+iDy)

+ T0C +iDy)+ T (= Cy+iDy), (17)

where
Cy==ChyClhoyo+ Cla 2 Chy
Cp==C),Clit CLCi
Cy=3(~ ChyCly= Clay2 Chit C2, Chr 4 CA Chip2) |
Dy=3(= CoyCly= €}, Cla+ Cu2lia Chrv CLCL ) |
Cy= (1/V2)(C22Cly - CL Chiz2)

Dy= (1/V2)(C3z242Chy = €, Ciizpa) (18)

Using expression (14) for D{*, the correlation
function in (1) for noninteracting electrons is [the
cross term in (1) involving D" and ® ¥ is zero]

TABLE I Values of L™,
q 0 1 -1
2 —sin% ~(1/V2) sinf cosbe?®  (1/V2) cosf sinf e!®
q

1::‘ — % sin%

I2 } cosfsin e i®
T2 }cosbsinbel®
I (Y3 cosbsind et

~

% (/3 cosfsinbet®

(1/2V2)cos 6 sing ¢~i*
(1/2V2) sin% &~%®

- (1/2V2) sin?0 &*®
(\/135) sin?0 729

— (/) sin0 g%

— (1/2V2) sinf cosb ¢'®
(1/2V2) (1 +cos?8)
—(1/2V2) (1 +cos?6)
W) (1 +cos?)

- (Jfg) (1 +cos?6)
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_Z:r_ﬁf ate ({5 O DL )
Imi (%, @), (19)

_4_ [(jo)+ <jz>]2

T o GheB)
T 1-=e™"¢
where the imaginary part of the noninteracting or-
bital susceptibility x} is

Imy%, (%, w)-—— 2 Uran— far)|[A™ (k, &+ 1) |2

X8 (Aw+ 8y — B.uin) - (20)
In (17), fi, is the Fermi-Dirac function for the elec-
tron band energy &3, and temgerature T=1/kgB.

The expressions for |4 (k,k+)|? can be evaluated
in terms of the coefficients given above in Egs.

(17) and (18). We obtain

|43 |2= {sin®6 P}*+ {cosf sinb (cosp R - sing Q)}* ,

|A% |2= 3{- sinfcosfcos¢d P+ (1+cos?0)QF ,
, (21)
| |2= 3{sinb cosb cos¢ P
+sin®0 cos2¢ @ + sin®6 sin2¢ R}P? |
where
P=Cy+3Cy,
Q=Cy+ (V3)Cy, (22)

R=Dy+ (V3)D, .

For the spin contribution, the corresponding ex-
pression is

1

Eﬁ?f dte (DM 0D P ¢))

-c0

=2 QL 1oy, (7, )= 2|F () ]25,(%, 0)

_ e-an
(23)
Here F (k) is the atomic form factor and x (K W)
has the same structure as (20) with [A™ (k, k+K)I?
in (20) replaced by

|2, Ch(k)CY (k+ k) (. (24)

III. NUMERICAL CALCULATION

Over the last few few years considerable exper-
ience has been gained in the calculation of the spin
susceptibility by evaluation of the Lindhard expres-
sion (20) with the spin matrix element (24).* We
have used similar methods to evaluate the orbital
susceptibility for a realistic band model of nickel,
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using the orbital matrix elements of Eq. (21).
The summation over electron wave vectors k
within the Brillouin zone is performed by setting
up a simple cubic mesh in the irreducible 5 of the
Brillouin zone, and a summation over these points
is followed by a summation over the various in-
equivalent irreducible zones. The energy 6 func-
tion occurring in the imaginary part of the sus-
ceptibility is used to construct a histogram with w
as parameter, and in this way x%(k, @) can be
calculated for all values of w with a single summa-
tion over k. Using a histogram spacing in energy
of 0.01 eV and with 690 points in the irreducible
zone, this method gives a statistical error of order
20% in the imaginary part of the susceptibility,
arising from the varying number of points included
in each box. This cause of error may be essen-
tially removed by performing an analytic integra-
tion within each mesh unit, but we feel that this
procedure was not justified in the present case in
view of the other uncertainties in the calculation.
The matrix elements (21) of the orbital calcula-
tion are more complicated than in the spin case,
since they depend explicitly on the polar coordi-
nates 6, ¢ of the scattering vector k relative to
the quantization axis of the wave functions. This
means that for each irreducible 75 part of the zone
the orbital matrix element is in general a different
function of the wave-function coefficients C,’: (E).
However, when K lies along high-symmetry direc-
tions in the zone, many of the irreducible zones be-
come equivalent, and even for these the matrix
elements reduce to simple functions of the wave-
function coefficients, so that little more computing
effort is required than in the spin case. In Table
II we give the orbital matrix elements 3,14} |2 for
the various inequivalent irreducible zones occuring
when k lies along the [100], [110], and [111] direc-

TABLE II. Orbital matrix elements along high-sym-
metry directions. The notation used is defined in Egs.
(18) and (21). In each direction there are other inequiv-
alent zones, formed from those shown by inversion about
the origin, whose matrix elements have the same form.

Direction  Zone 8, ¢ Tl AR ik

[100] 1 0,0 2Q?
2 in,0
3 im 4n }Pz +¢

[110) ; i::g }Pa +3Q+1R?
ook wae
5 im0 1P 452 +3R - 4PQ
6 in, 7 1P2+3Q? +1R? + §PQ

[111] 1 cosl(y2),ir %P2 +Q®+3R? +}(- RQ — 2PQ +2PR)
2 cos™(V3), §r 3P +@%+ 3R +§(RQ +2PQ+2RP)
3 cos™ (V2 ,4r  2P?+Q*+3R? +6(RQ - 2PQ - 2RP)
4 cos W, im 8P +Q* +4R? +L(- RQ+2PQ +2RP)
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FIG. 1. Real and imaginary parts of the orbital and

spin susceptibilities for nickel at 1.67T, calculated by
numerical evaluation of the Lindhard summation without
including electron interactions. A mesh in reciprocal
space of size 2m/18a, was used, and the results are
shown for K=]1§, 3, and 1 times the zone-boundary value
2m/ay in the [100] direction.

tions. The sum over the values of ¢=0, +1, and
— 1 occurs following the expansion of Eq. (5) into
spherical components.

We show in Fig. 1 examples of the real and imag-
inary parts of the susceptibility y % (¥, ) plotted
against w for three values of ¥ along the [100]
direction for nickel at a temperature of 1. 67,. The
electron energies 8;,, are from a 3d-band struc-
ture calculated using a tight-binding approxima-
tion interpolation scheme with the parameters giv-
en in Table III. The Fermi level was chosen to
give a total of 0. 6 holes in the band. Further de-
tails of the band structure and of the calculation
of the spin part (reproduced in Fig. 1 by the open
circles) are given in Ref. 4. The orbital sus-
ceptibility (shown by the closed circles) is seen to
be very different in form from the spin part. From
the point of view of current experiments, the imag-
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TABLE III. Slater-Koster parameters for the band
structure used. [The notation is that of J. Slater and
G. Koster, Phys. Rev. 94, 1498 (1954).]

ddo —0.4977
ddm 0.3057
ddé -0.0839
dy(tee) 2.4882
doleg) 2.1768

inary part in the energy range up to 0.1 eV is of
most interest, and in this range the orbital con-
tribution is only about one-quarter of the spin con-
tribution. In general the k dependence of the orbit-
al susceptibility is very much smaller than in the
spin case. In particular, the narrowing of the
spin distribution at small ¥, shown, for example,
at [100] at the top of the figure, is absent in the
orbital case. This feature is caused by the wholly
intraband nature of the spin matrix elements at
small k. The orbital matrix elements, being en-
tirely interband, show no marked change as k goes
to zero. The difference in the matrix elements
also shows itself very clearly at very large energy
transfers beyond the range of Fig. 1. Figure 2
shows an extension of the & Il [100] imaginary sus-
ceptibility curve to cover the much larger energy
range up to 4 eV. It is seen that the spin contribu-
tion is dominant only in the extreme left at small
energies, while from 0. 3 to 4 eV the orbital con-
tribution is the larger. In particular, at around
3-eV energy transfers the orbital contribution is
dominant. Unfortunately, this energy range is not
easily accessible experimentally. The origin of the

. | T T T
° oim x (kw)
Y ° O Im Xs (kw)
° x = (100)
L]
%0 o e ®
oz2f ¢ -
T ¢ L
E ° o
g o, © % o P
-~ o
o (14
O A R .
% [ ] L] Y °
~ - o o o0
[ ° o © .
o
[ ]
o (8 o
g ° .
°O
0 1 1 ©0000lo 1
o] 1 2 3 4
hw (eV)
FIG. 2. Imaginary part of the orbital and spin sus-

ceptibilities for nickel at the [100] zone boundary, as in
the lower portion of Fig. 1, over the full energy range
up to 4 eV.
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earlier decay of the spin susceptibility with in-
creasing energy has been investigated by examining
the individual terms in the Lindhard summation
(20). It is found that the electron excitations with
energy transfers exceeding 3 eV tend to be from
near the bottom of the band structure, which occurs
at the point x, to near the top of the band structure,
which is in fact also at the point x. The relevant
wave functions tend to be nearly orthogonal so that
the spin susceptibility, which depends on an over-
lap-type matrix element, tends to be small. In
contrast, the orbital matrix element is composed
of sums of terms of the form C}CY. - C%. ¢ in
the notation of" (16), which are of order unity for
some of the levels involved.

Returning to the real part of the susceptibilities,
illustrated in the left-hand side of Fig. 1, itis
remarkable that the orbital susceptibility Rey} (k, »)
is as much as % that of the spin in the static as k
and w go to zero, has little K dependence, and only
modest w dependence over the range of Fig. 1.
These results follow from the presence, discussed
in the previous paragraph, of the appreciable imag-
inary part of the orbital susceptibility extending to
high energies. This gives a large contribution to
the Kramers-Kronig integral used in evaluating the
real part.

The anisotropy of the orbital scattering is shown
in Fig. 3 for an intermediate value of the scatter-
ing vector of 1.4 A%, The magnitude of the anisot-
ropy between the three principal directions is seen
to be scarcely above the statistical error at-ener-
gies below 0. 15 eV. Even at higher energies the
anisotropy is not appreciably above that observed in
the spin susceptibility, '* and little is seen of the
extreme anisotropy evident in the single orbital
example treated earlier by the authors.

IV. DISCUSSION

There are several general features of the orbital
cross section that are worth explicit mention.

First, the orbital interaction operator is indepen-
dent of the electron spin and hence its contribution
to the cross section adds to the longitudinal spin
susceptibility. Also, in contrast to the result for
a free-electron gas, °’'° the orbital cross section
for the tight-binding model is finite for [k [=0.
Finally, there are no intraband contributions to the
orbital cross section because Kw, Eq. (13), is an
antisymmetric matrix,

Comparing Egs. (19) and (23) for the orbital and
spin contributions to the cross section, (jg)+ (js)
has the role of an orbital form factor. To compare
its behavior as a function of [k |with the atomic
form factor F (k) we can take the value of {(jo)+ (js)
calculated by Watson and Freeman !® and Mook’s "
measurement of F (k). The comparison shows that
they have a similar shape with (jo)+ (j») expanded
over F(k), with the difference at large Ik | giving
an extra factor of 2 in the orbital contribution to
the cross section.

Turning to the comparison of the calculated orbit-
al and spin scattering from the point of view of
experiment, it is clear that in the region of current
neutron experiments, where 7w is below 0. 12 eV,
the spin contribution greatly exceeds the orbital.

At these low energies the effect of electron inter-
actions is almost certain to increase this disparity.
However, for #Zw~0.15 eV, the two contributions
become comparable and thereafter the spin scatter-
ing rapiodly decreases. We predict a region with
k>0.2 A™ and %w >0. 2 eV where the orbital scat-
tering will be dominant. To investigate this region
experimentally will require good neutron fluxes at
very high energies, since the form factor forces
the use of high-energy incident and scattered neu-
tron energies.

A possible way of separating out the orbital and
spin scattering contributions was suggested by
Lowde and Windsor.* This involved the use of a
magnetic field to rotate the spin directions of the
aligned ferromagnetic material relative to the scat-
tering vector. This procedure allows separation
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of the parallel and perpendicular scattering com-
ponents (an inelastic spectrometer employing polar-
ized neutrons may also be used for this purpose).

If the assumption is made that at low temperatures,
when the spin moment is nearly fully aligned, the
spin scattering is confined to the perpendicular
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component, an estimate can be made of the orbital
scattering. In practice this is only an upper limit
because of the possibly incomplete magnetization
of the sample. However, the magnitude observed
of about 0.2 eV™ atom™ at energies below 0. 04 eV
has the predicted order of magnitude.

*Visiting scientist from Atomic Energy Research
Establishment, Harwell, Berkshire, England.
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We have calculated the energy dispersion of the lowest eight 2E Frenkel exciton branches in
the four-sublattice antiferromagnet Cr,O4. This is the first such calculation for a magnetic
insulator, The symmetry properties and k dependence of the interion exchange and Coulomb
interactions which give rise to dispersion and Davydov splittings are presented in detail. Pair-
wise matrix elements of the interion Hamiltonian are treated as phenomenological parameters,
and in most cases were determined from the k=0 energies analyzed in an earlier paper. Dis-
persion curves for five directions in the rhombohedral Brillouin zone, and the exciton density
of states, are given. Confirmation of the main features of the calculated exciton bands is
provided by a measurement of the exciton-magnon absorption band shape. In the presence of
a number of simplifying assumptions, this band shape is given by the joint exciton-magnon den-

sity of states. Good agreement between the calculated and observed band shape is obtained.

I. INTRODUCTION

Because of translational symmetry, the optical
excitations within the localized electrons of mag-
netic insulators.(usually d~d.or f-f transitions)
can properly be described as Frenkel excitons.!

Coulomb and exchange interactions between the
magnetic ions provide the mechanisms for the
characteristic exciton properties, viz., Davydov
splittings and dispersion. It is of considerable im-
portance to establish the existence of these effects
because they provide important insights into the



